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1 Resumo

O ensino de f́ısica necessariamente envolve o ensino de matemática e de relações entre

as duas disciplinas; relações essas que são de ordem instrumental e epistemológica. No

presente trabalho examinamos algumas justificativas para o sucesso do uso da matemática

na f́ıscia e posśıveis implicações no ensino de f́ısica. Investigamos o perfil epistemológico

de estudantes de graduação em cursos de bacharelado e licenciatura com relação à efe-

tividade da matemática na f́ısica. A metodologia utilizada envolveu o desenvolvimento,

aplicação e análise de um questionário respondido por 92 estudantes de cursos da área

de ciências exatas exatas em uma universidade pública. Constatamos que os cursos anal-

isados não contribuem para mudanças do entendimento epistemológico dos estudantes

acerta da questão investigada; e que estes gostariam que questões relacionadas à filosofia

da ciência fossem mais abordadas no curŕıculo.

2 Introdução

Ao longo de sua história, a f́ısica sofreu um profundo processo de matematização no

qual a matemática passou a ser um elemento indispensável na f́ısica (1, 2). No presente

texto, quando nos referimos à matematização, estamos falando do processo como descrito

por Gorham et al.:

A tese da matematização significa, acima de tudo, a transformação de con-
ceitos e métodos, especialmente os que dizem respeito à natureza da matéria,
do espaço e do tempo, pela introdução de técnicas e ideias matemáticas (ou
geométricas). (3, p. 1)

Como resultado do processo de matematização, a matemática assumiu um papel es-

trutural na f́ısica, um papel inclusive de fonte de descoberta e descrição de entes f́ısicos

(1). Entretanto, essa ampliação do papel da matemática não foi isenta de controvérsias.

Particularmente entre os século XVI e XVII, houve vários debates epistemológicos na co-

munidade cient́ıfica acerca das justificativas para a utilização e o sucesso da matemática na

mecânica (4, 5). Entre os séculos XIX e XX, principalmente nos estudos da eletrodinâmica,

também ocorreram cŕıticas ao excessivo caráter abstrato e supostamente descolado da re-

alidade imediata que as teorias foram paulatinamente adquirindo f́ısica (6, 7, 8).

Como concepções epistemológicas de estudantes podem prejudicar o seu aprendizado

(9, 10, 11, 12), inclusive concepções acerca das relações entre a f́ısica e a matemática

(13, 14), torna-se relevante refletir se uma melhor compreensão acerca das justificativa da

utilização e do sucesso da matemática na f́ısica, poderia também impactar o aprendizado.

Neste trabalho temos como objetivo contribuir para o aprofundamento do debate

acerca dos efeitos que as concepções epistemológicas de estudantes sobre o sucesso da
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utilização da matemática na f́ısica têm no aprendizado. Para isso analisamos algumas

visões epistemológicas mais comuns sobre o tema, a literatura sobre o impacto que as

questões epistemológicas exercem sobre a educação e elaboramos e aplicamos um ques-

tionário para traçar um perfil epistemológico de estudantes de cursos de ciências exatas

do IFSC da USP em relação à justificativa que eles oferecem para o sucesso da utilização

da matemática na f́ısica bem como entender se o curso influencia suas concepções.

3 Matematização da natureza

A matematização não avançou simultaneamente em toda a f́ısica. Algumas áreas como

a óptica, a astronomia e a harmonia já recebiam um tratamento mais matematizado desde

a Antiguidade, quando eram chamadas de ciências mistas (3). Vamos focar no processo

de matematização que ocorreu a partir do século XVII, em especial sobre seus efeitos na

mecânica1.

Nesse peŕıodo é posśıvel observar um importante processo no qual o conceito de

grandezas f́ısicas se transforma, gradativamente, de algo qualitativo para algo quanti-

tativo (2). Um dos autores envolvidos no processo de matematização dos estudos do

movimento foi Galileu Galilei (1564-1642). A análise do f́ısico florentino se concentra em

como ocorre o movimento e no no porquê dele ocorrer (15), com isso Galileu abandona as

abordagens qualitativas que entendiam o movimento e o repouso como estados ontologi-

camente opostos e elabora uma descrição matemática e quantitativa do movimento.

Burtt (16) descreve o método de análise utilizado por Galileu em 3 etapas: “intuição”

ou “resolução”, que consiste na abstração da situação f́ısica em uma estrutura matemática;

“demonstração”, que consiste em demonstrações feitas sobre a abstração matemática; e

“experimentação”, que consiste em verificar experimentalmente as deduções obtidas. A

incorporação da etapa da “demonstração” foi um grande passo no processo de matem-

atização da mecânica2.

Outro marco importante no caminho da matematização da mecânica foi a publicação

de “Prinćıpios matemáticos da filosofia natural” por Isaac Newton (1643-1727) em 1687.

Partindo de um mesmo conjunto de hipóteses f́ısicas, o f́ısico inglês descreve tanto as

leis da queda livre quanto das órbitas dos planetas utilizando a linguagem geométrica

(18). Dijksterhuis (18) também destaca a importância, do ponto de vista do processo

de matematização, da força gravitacional ser uma ação à distância entre corpos, não

permitindo uma “imagem visual” ou intuitiva da interação, tendo de ser tratada não

1Para um estudo mais detalhado sobre esse processo ver (5).
2Quando destacamos as contribuições de Galileu e de outros em nosso trabalho como tendo um papel

importante no processo de matematização, não estamos dizendo que a obra ou o autor foram os únicos
responsáveis por fazer avançar o ńıvel de matematização, nem que esse avanço se deve à genialidade
de alguns poucos indiv́ıduos. Os avanços da matematização, como todo conhecimento humano, foram
histórica e coletivamente produzidos. As obras citadas servem de marco mas em todos os casos existem
trabalhos anteriores com uma abordagem similar. Ver (17) para exemplos na mecânica.
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como uma explicação mecanicista do fenômeno mas como uma ferramenta matemática

simples e útil.

Gingras (4) defende que o sucesso do trabalho de Newton, do ponto de vista de suas

previsões experimentais, contribuiu para que os elementos de matematização incorporados

em sua mecânica fossem naturalizado pela comunidade cient́ıfica. Entretanto, Gingras

ressalta que o fato da mecânica newtoniana ser bastante precisa e estar de acordo com

resultados experimentais conhecidos e outros novos na época não foi um fator suficiente

que fosse aceita pela comunidade cient́ıfica, havendo cŕıticas bastante consistentes à nova

abordagem. Privat de Molières (1676-1742) foi um dos principais defensores de uma teoria

gravitacional puramente mecânica, na qual pequenos vórtices substituem as interações à

distância postuladas por Newton. Para Molières, a precisão oferecida por Newton não

era motivo para defender uma f́ısica que o autor acreditava ser demasiadamente abstrata.

Em um ensaio para a Academia de Paris, ele escreveu:

Ocorre que, somente de forma aproximada, os pontos dos vórtices apresentarão
essa força que depende do quadrado da distância [...] mas isso simplesmente
estaria mais de acordo com as observações astronômicas. Portanto as força
mecânicas do vórtices nos dão as leis astronômicas como elas são de fato mais
precisamente que as forças puramente metaf́ısicas de Newton, que conseguem
as leis com precisão geométrica demais. ((19) apud (4, p.6))

A citação de Molières exemplifica como a matematização da f́ısica não foi algo in-

contestável simplesmente pelo seu sucesso experimental, sendo necessário também uma

justificativa epistemológica. Gingras (4) mostra que, de fato, houve esse trabalho de

convencimento por parte dos f́ısicos favoráveis à matematização. O autor também argu-

menta que, com o passar do tempo, a aceitação do trabalho de Newton se tornou tão

grande que contribuiu para que, durante os séculos XVIII e XIX, surgissem trabalhos em

outras áreas da f́ısica com técnicas de matematização similares às utilizadas pelo f́ısico

inglês. Entre eles os trabalhos de Joseph Fourier (1768-1830) na termodinâmica, e James

Maxwell (1831-1879) no eletromagnetismo incorporaram a abordagem quantitativa e a

argumentação lógico-dedutiva newtoniana em suas respectivas áreas (8).

Gingras (4) aponta que a matematização do eletromagnetismo teve também cŕıticos

como Michael Faraday (1791-1867), que criticava os avanços da matematização pois de-

fendia que a ciência deveria se manter acesśıvel para o público geral. Para além dos

cŕıticos, entretanto, houve também ponderações por parte dos favoráveis à matematização

sobre seus limites. Maxwell, por exemplo, criticou algumas formas da utilização da

matemática na f́ısica. Para ele, a utilização seria benéfica, mas o f́ısico deveria estar

sempre atento para que cada operação matemática pudesse ser interpretada fisicamente:

A parte intermediária da f́ısica matemática, que consiste em nossos cálculos e
transformações de expressões simbólicas, é essencial para a ciência f́ısica mas
é, na realidade, matemática pura. [...] como estamos engajados no estudo da
filosofia natural devemos nos esforçar para deixar nossos cálculos de tal forma
que cada passo admita uma interpretação f́ısica. (20, p. 672)
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A citação de Maxwell exemplifica uma parte do processo de convencimento epis-

temológico necessário para que a matematização fosse naturalizada para o eletromag-

netismo. Ao criticar o que considerava excessiva matematização o f́ısico está defendendo

a matematização que ele considera correta usando argumentos epistemológicos. A citação

também serve de exemplo sobre como concepções epistemológicas podem influenciar pro-

fundamente o desenvolvimento da ciência já que a exigência colocada por Maxwell, de

que cada passo admita interpretação f́ısica, não é de forma alguma irrelevante3.

Paty (1) defende que, durante o século XX, houve outro importante processo de

matematização, este afetando diversas áreas da f́ısica. A caracteŕıstica determinante

desse processo é que a matemática passou a ter um papel estrutural na f́ısica, partici-

pando inclusive do processo de descoberta de entes f́ısicos e de suas caracteŕısticas. A

descoberta do neutrino, segundo o próprio Paty (ibid.), exemplifica bem esse estágio de

matematização. Mesmo vinte anos antes de qualquer ind́ıcio experimental de sua exis-

tência, o neutrino havia sido proposto como uma part́ıcula teórica a partir de modelos

matemáticos.

Teorias f́ısicas nas quais a matemática desempenha um papel estrutural, como a rela-

tividade, mecânica quântica e f́ısica de part́ıculas, obtiveram um sucesso estrondoso, o que

fez com que esse estágio de matematização fosse muito rapidamente naturalizado. Entre-

tanto, isso não impediu que houvesse questionamentos de ordem epistemológica, embora

bem mais leves do que os mencionados nos peŕıodos anteriores.

Eugene Wigner (1902-1995), em seu famoso artigo “The unreasonable effectiveness of

mathematics in the natural sciences” (7), expressa seu desconforto com o fato de que há

sempre uma estrutura matemática para descrever um fenômeno f́ısico e, principalmente,

na capacidades dessa estrutura matemática, a partir de deduções com sua lógica própria,

conseguir desvendar novos mistérios sobre o mundo real. A conclusão de Wigner é que

o sucesso da matemática é uma grande e agradável coincidência que ele espera que se

mantenha.

O artigo de Wigner é um exemplo das formas de questionamento brando à matemati-

zação presente entre alguns f́ısicos ao longo do século XX, que se perguntam os porquês do

sucesso da matemática, tomando como pressuposto que ela deve continuar a ser utilizada.

O século XX, entretanto, foi um peŕıodo em que a matematização também avançou muito

nas ciências humanas e biológicas. Nesses casos a resistência foi bem maior e mais vocal,

como com a mecânica durantes os séculos XVII e XVIII, havendo questionamentos severos

sobre se a utilização da matemática não havia, na realidade, prejudicado algumas áreas,

argumentando, por exemplo, que os cientistas favoráveis à matematização confundiam

seus modelos excessivamente simplistas com a realidade4.

3Um exemplo contemporâneo que não passaria pelo crivo de Maxwell são as técnicas de renormalização
utilizadas na teoria quântica de campos.

4Não vamos nos aprofundar nos debates que ocorreram fora da f́ısica neste trabalho, referências sobre
o assunto podem ser encontradas em (21, 22, 23, 24).
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Fazemos esse recorte histórico para destacar que a evolução do conhecimento f́ısico

nos últimos séculos foi acompanhada por transformações das concepções epistemológicas

da comunidade cient́ıfica e constatamos que a justificativa para a aplicação e o sucesso da

matemática na f́ısica é uma questão epistemológica em aberto particularmente importante.

Entendemos que a relação entre a f́ısica e a epistemologia também se reflete no ensino

de f́ısica e que deve haver um empenho por parte dos educadores em desenvolver as

concepções epistêmicas dos educandos em conjunto com o ensino dos conteúdos espećıficos

de cada disciplina.

4 Educação e suas demandas

É muito comum, em todos os graus do sistema educacional, a justificativa de que

muitas das dificuldades dos estudantes em f́ısica são causadas por deficiências anteriores

em matemática. Pietrocola (25) argumenta que, no contexto universitário, essa justifica-

tiva se expressa também na estrutura curricular, que coloca como pré-requisitos para as

disciplinas de f́ısica uma série de disciplinas matemáticas que são, muitas vezes, idênticas

às oferecidas aos graduandos em matemática. Ainda segundo o autor, essa estrutura cur-

ricular contribui para o alto ı́ndice de desistência no curso de f́ısica, decorrente da quebra

de expectativas dos estudantes, que, naturalmente, esperavam ter mais contato com a

f́ısica.

Pietrocola (ibid.) diz também que o mesmo problema curricular se expressa no en-

sino médio, dadas suas devidas particularidades, e com um agravante. Como o ensino

médio não tem unicamente o papel de formar cientistas, que vão necessariamente precisar

das ferramentas matemáticas para atuar em sua profissão, os conteúdos matemáticos co-

brados na disciplina de f́ısica desmotivam ainda mais o estudante secundarista, já que,

sem a promessa de uma utilidade prática no futuro, a matemática adquire um caráter de

“pedágio” para o aprendizado da f́ısica.

É imposśıvel negar que a falta de bagagem matemática pode prejudicar muito o en-

tendimento da f́ısica pelo educando. Meltzer (26) mostra isso em um estudo com alunos de

um curso introdutório de f́ısica no qual encontrou uma correlação entre o aprendizado dos

alunos e seu conhecimento matemático anterior à disciplina. Essa correlação, entretanto,

não implica que os conhecimentos matemáticos garantem o aprendizado na f́ısica. Meltzer

aponta que, embora a correlação exista, os coeficientes de correlação são baixos, de forma

que os conhecimentos anteriores em matemática não têm grande poder preditivo sobre

o sucesso do estudante na f́ısica. O pesquisador sugere que possa haver uma “variável

oculta” por trás dessa correlação, que é relacionada com o conhecimento matemático, mas

que tem um efeito mais direto sobre o aprendizado em f́ısica.

Um posśıvel candidato para a “variável oculta” pode ser encontrado nos trabalhos de

Redish (27), que defende que a matemática utilizada na f́ısica e a matemática pura têm
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diferenças relevantes na atribuição de sentido aos śımbolos utilizados. Nas palavras do

autor:

Ela [a matemática utilizada na f́ısica] tem um propósito diferente - representar
o conteúdo de uma realidade f́ısica, ao invés de expressar uma relação abstrata -
e tem até uma semiótica distinta - a forma como sentido é atribúıdo a śımbolos
- da matemática pura. (27, p. 1)

Para Redish, o educando poderia ser proficiente no conceito matemático utilizado

na aula de f́ısica, mas ter seu aprendizado prejudicado por não entender as nuances da

semiótica do contexto f́ısico. A diferença semiótica apontada por Redish sugere que a

“variável oculta” de Meltzer pode estar situada na interface entre a f́ısica e a matemática

e explica o porquê de cursos de reforço em matemática não necessariamente resultarem

em uma melhora significativa no desempenho em f́ısica (28), mostrando que esses cursos

não devem ser somente cursos de matemática pura. Olhar com mais atenção para a

interface entre a f́ısica e a matemática, mais especificamente para as questões epistêmicas

ali presentes, pode ajudar na elaboração de cursos suplementares de matemática para

a f́ısica e no ensino de f́ısica em geral, nos mostrando como inserir uma matemática

contextualizada para o ensino de f́ısica, que potencialize o aprendizado ao invés de servir

como obstáculo a ele.

Vários estudos apontam o efeito a compreensão acerca de questões epistemológicas

podem ter no desempenho dos estudantes. Millar et al. (9) acompanharam estudantes

com idades entre 9 e 14 anos realizando atividades investigativas relacionadas à ciência

e, após realizar entrevistas com os estudantes, os pesquisadores constataram que o en-

tendimento dos jovens sobre os objetivos e propósitos da investigação cient́ıfica tinham

uma relação notável com suas performances nas atividades investigativas. Ryder e Leach

(10), em um estudo similar, acompanharam projetos de pesquisa de graduandos em f́ısica

tentando relacionar suas concepções epistemológicas sobre ciência com posśıveis dificul-

dades na realização da pesquisa. Os autores chamam essas concepções epistêmicas que

prejudicam o aprendizado de “demandas epistêmicas”. Seria então trabalho do educador

identificar essas demandas a partir de atividades que estimulam a investigação e o pensa-

mento cient́ıfico e auxiliar o aluno a superá-las com debates e atividades voltadas para a

sofisticação do entendimento filosófico sobre ciência.

Hofer (29) expõe três visões distintas quanto ao mecanismo pelo qual uma concepção

epistemológica sofisticada pode afetar o desempenho de um estudante: a primeira é que

o desenvolvimento epistemológico seria o benef́ıcio em si, permitindo a evolução de es-

truturas complexas de pensamento e interpretação; a segunda é que ela contribuiria para

o desempenho acadêmico do estudante, influenciando a escolha de estratégias de estudo

e sua eficiência; a terceira é que o desenvolvimento epistemológico criaria várias ferra-

mentas e recursos cognitivos que seriam ativados na construção de conhecimento e no

aprendizado.
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Apesar de todo esse volume de pesquisa, há pouqúıssimos estudos sobre as demandas

epistêmicas dos estudantes quanto às relações entre f́ısica e matemática. Atáıde e Greca

(13) e Al-omari e Miqdadi (14) trabalharam com grupos de estudantes universitários e

conseguiram demonstrar uma relação estatisticamente significativa entre as visões epis-

temológicas dos estudantes sobre como a matemática é utilizada na f́ısica com suas es-

tratégias de resolução de exerćıcios. Ambos os artigos conseguem relacionar epistemologias

mais ingênuas, que envolvem visões de que a matemática é utilizada na f́ısica somente para

cálculos numéricos, com a estratégia de resolução por tentativa e erro, exemplificando um

caso de como concepções epistemológicas sobre a interface entre a f́ısica e a matemática

podem prejudicar o aprendizado.

Não encontramos, entretanto, nenhum estudo que aborde a existência de uma demanda

epistêmica dos estudantes sobre o porquê da matemática ser utilizada na f́ısica com tanto

sucesso. Neste trabalho argumentamos que essa demanda de fato existe e que pode estar

contribuindo para as dificuldades que os educandos encontram no aprendizado de f́ısica.

Para compreender melhor as concepções epistemológicas de estudantes sobre a efetividade

da matemática desenvolvemos um questionário que nos permitiu dividir estudantes de

graduação em diferentes categorias conforme suas concepções epistemológicas.

5 Categorias epistemológicas

No presente trabalho desenvolvemos categorias com as quais seria posśıvel dividir as

principais justificativas epistemológicas para o sucesso da utilização da matemática na

f́ısica. As categorias foram desenvolvidas para que, mediante a aplicação de um ques-

tionário, pudéssemos analisar as concepções epistemológicas de estudantes de graduação

na área de ciências exatas acerca das relações entre a f́ısica e a matemática.

Atáıde e Greca (13) e Al-omari e Miqdadi (14) criaram categorias para dividir estu-

dantes de graduação em relação ás suas concepções sobre como a matemática é utilizada

na f́ısica. Ambos os artigos utilizam as mesmas categorias, que dividem os participantes

em 3 grupos: os que enxergam a matemática somente como uma ferramenta de cálculos,

os que enxergam que ela é utilizada para traduzir a natureza e os que enxergam que ela

tem um papel estrutural nas teorias f́ısicas. Utilizamos um enfoque distinto dos trabalhos

apresentados. Neste trabalho, criamos categorias com as quais podemos dividir estudantes

de graduação em função da justificativa que eles oferecem para o sucesso da utilização da

matemática na f́ısica.

Nos inspiramos nos debates históricos apresentados acima e no trabalho de Dorato

(30), que cria categorias para responder a essa questão epistemológica. O autor propõe

quatro categorias que justificam a utilização da matemática: o antinaturalismo de Steiner

(a matemática funciona, pois o universo se estrutura de maneira antinaturalista); a res-

posta Kantiana (ela funciona, pois se desenvolveu a partir de uma ferramenta selecionada
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pela seleção natural para interpretar a realidade); matemática como um tipo de ĺıngua (ela

funciona, pois ĺınguas em geral têm uma grande capacidade descritiva); e a matemática

como a ciência da abreviação de sequências (ela funciona por ser um instrumento capaz

de abreviar qualquer sequência5).

Adaptamos as categorias acima a fim de utilizá-las para analisar as concepções de

estudantes. Agrupamos a terceira e a quarta categoria em uma única, pois ambas pres-

supõe que a matemática é extremamente maleável e poderia descrever qualquer universo

conceb́ıvel. Adicionamos a categoria “a matemática funciona, pois é a linguagem natural

da realidade”, de maneira semelhante à utilizada por Atáıde e Greca (13), pois essa é

uma visão comumente presente tanto na atualidade quanto historicamente e distinta das

outras. A seguir descreveremos as categorias, assim como argumentos que corroboram e

contestam cada concepção epistemológica.

5.1 A matemática como ferramenta de tradução

Esta categoria abrange os que entendem que a matemática descreve bem a natureza

porque esta seria intrinsecamente matemática. Isso implica que a matemática foi algo

descoberto pelos seres humanos a partir de suas interações com a natureza. Também fica

claro que, para essas pessoas, a matemática é única, não podendo haver outra matemática

desenvolvida pela humanidade sem que fôssemos expostos a outra natureza.

A concepção se adéqua bem aos momentos na história da ciência em que cientistas

desenvolveram ferramentas matemáticas para resolver problemas f́ısicos que estavam es-

tudando, como é o caso de Newton e Leibnitz (31) com o cálculo, e da representação

vetorial desenvolvida por Gibbs e Heavyside (8) para o eletromagnetismo.

Por outro lado, a matemática tem também algumas limitações. Primeiramente, há

os casos em que ferramentas matemáticas foram desenvolvidas antes das teorias f́ısicas

nas quais elas seriam aplicadas e por pessoas que nada sabiam sobre essa área de futura

aplicação, como é o caso do cálculo tensorial, que foi utilizado no desenvolvimento da

teoria da relatividade geral (32).

Outro problema seria o fato de que a matemática tornou-se cada vez mais indepen-

dente da realidade natural. Isso se expressa tanto pelos matemáticos não necessariamente

estudarem teorias com aplicações imediatas, quanto do ponto de vista da estruturação

axiomática do conhecimento matemático (33), que a torna formalmente independente da

realidade natural. Não está claro como, apesar da axiomatização, parte da matemática

continuou se desenvolvendo de forma aplicável em teorias f́ısicas interpretada como uma

ferramenta de tradução.

5O autor considera a evolução temporal de sistemas como uma sequência de estados e a matemática
como capaz de abreviar essa sequência com uma lei geradora.
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5.2 A matemática como ĺıngua

Ĺınguas conseguem explicar, prever e descrever aspectos do mundo. A partir do ponto

de vista representado na categoria lingúıstica, a matemática seria uma ĺıngua particular-

mente precisa e rigorosa, o que potencializaria as capacidades gerais presentes em todas as

ĺınguas e, portanto, conseguiria descrever o universo independente de como ele realmente

fosse (34).

Na categoria lingúıstica, a matemática foi algo inventado, não descoberto, e poder-se-

ia a priori, inventar outras ĺınguas para suprir seu papel. O diferencial da matemática

em relações às ĺınguas vernaculares seria somente o rigor e a precisão, sendo inclusive

potencialmente posśıvel desenvolver uma ĺıngua mais precisa e mais rigorosa que cumpriria

ainda melhor o papel da matemática.

Segundo Dorato (30), a visão da matemática como ĺıngua é embasada pelas teorias

lingúısticas de Chomsky (35) (teoria gerativa) e de Fodor (36) (teoria computacional), pois

a matemática possui duas das principais caracteŕısticas de ĺınguas em geral: produtividade

(um número potencialmente ilimitado de resultados podem ser gerados a partir de algumas

premissas) e sistematicidade (as áreas da matemática são muito relacionadas, de forma

que conseguir produzir resultados em uma área está intrinsecamente ligado a conseguir

produzir resultados em outras).6

Entretanto, ainda segundo Dorato (30), a matemática tem um problema fundamen-

tal como ĺıngua: nem sempre é posśıvel encontrar uma correlação não matemática para

conceitos matemáticos. Isso é uma propriedade muito importante das ĺınguas, signifi-

cando que sempre conseguimos encontrar uma extensão clara dos conceitos na realidade

ou no mundo natural. Na matemática conseguimos encontrar extensões somente em al-

guns casos. O conceito de subtração, por exemplo, é facilmente visualizado na realidade

separando objetos f́ısicos, mas outros conceitos, inclusive com muita significância f́ısica,

como a analiticidade de funções, não possuem correspondência alguma com o mundo real.

Outro problema que encontramos é o fato de que o único diferencial da matemática

seria ser uma ĺıngua mais refinada, o que não consideramos ser justificativa suficiente para

que sua utilização na ciência seja tão mais eficaz do que a das outras ĺınguas. Também

há de se questionar como, podendo a matemática formular uma infinidade de modelos

posśıveis para a realidade, conseguimos encontrar o modelo correto dentro de tantos mo-

delo posśıveis.

6Analisar de forma mais profunda o caráter lingúıstico da matemática foge bastante do escopo do
nosso trabalho. Uma abordagem mais aprofundada sobre essas teorias lingúısticas pode ser encontrada
em (36) e (35).
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5.3 A matemática como um a priori

Immanuel Kant (1724-1804), em seu livro Cŕıtica da Razão Pura, discorre sobre a

diferença entre conhecimento a priori, que seria universal e logicamente dedut́ıvel, e co-

nhecimento a posteriori, cuja justificativa depende de experiências com a realidade (37).

Por consequência, Kant defende que há estruturas e faculdades do pensamento que são

inatas e que prescindem o conhecimento, as chamadas estruturas a priori.

Para os estudantes que se enquadram na categoria da matemática como um a priori,

a matemática é eficaz na descrição da natureza, pois interpretamos a realidade a partir de

nosso aparato mental e sensorial, nos quais há ferramentas matemáticas impĺıcitas (como

noções de tempo e espaço), que foram naturalmente selecionadas, e são estruturas a priori

para o racioćınio matemático. Quando utilizamos essa “intuição matemática primitiva”

estaŕıamos essencialmente projetando a matemática na natureza, pois foi a partir dessas

estruturas a priori que desenvolvemos a matemática.

A visão kantiana da matemática pode ser justificada pela biologia evolutiva e a psi-

cologia cognitiva argumentando que a matemática se desenvolveu a partir de intuições

matemáticas instintivas (38, 39), o que justificaria sua efetividade na f́ısica. Delvin (40)

corrobora essa visão oferecendo exemplos de capacidades matemáticas que auxiliam a

sobrevivência dos animais como, por exemplo, a capacidade de discernir qual árvore tem

mais frutos ou se o seu grupo está em desvantagem numérica em um confronto.

Esta categoria também tem limitações. Não é fácil justificar porque uma ferramenta

desenvolvida pela seleção natural para a sobrevivência dos seres humanos é tão eficaz em

escalas como as da f́ısica quântica e mecânica relativ́ıstica, estando inclusive em descom-

passo com nossa intuição, que falha de forma tão espetacular nessas escalas.

5.4 A resposta antinatural

Essa categoria agrega as diferentes visões que afirmam não existir ou não encontrar

uma explicação de ordem natural para o sucesso da utilização da matemática na f́ısica

e também as visões instrumentalistas que não veem necessidade de encontrar uma ex-

plicação. A famosa tese de Wigner (7), que afirma que esse sucesso é uma agradável e

desejável coincidência, é talvez a mais simples visão antinatural. O f́ısico e filósofo Mark

Steiner (1942-2020) também se enquadra na visão antinaturalista. Ele utiliza o sucesso da

matemática para defender a tese téısta de que o universo tem um caráter antropomórfico

(41). Quaisquer outras teses de caráter téısta sobre o sucesso da matemática também se

enquadram nesta categoria

Dada a diversidade da categoria não é posśıvel elaborarmos aqui consequências gerais

ou problemas, sendo necessário analisar cada posicionamento espećıfico para tal. O que

une todas essas visões é o fato de oferecerem como resposta para a questão da efetividade

da matemática na f́ısica fatores religiosos e sobrenaturais, ou simplesmente alegarem que
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não há uma resposta.

6 Metodologia

Utilizamos na pequisa um questionário com uma escala Likert de 6 itens no qual,

em cada item, o estudante deve informar seu grau de concordância com uma afirmação

em uma escala entre “discordo totalmente” e “discordo totalmente”. Cada asserção está

relacionada a uma das categorias epistêmicas elaboradas na seção anterior e, para cada

categoria, há 5 asserções, com exceção da categoria da matemática como antinatural, que

conta com somente 3.

Para além dessas afirmações, fizemos também 5 perguntas que dizem respeito ao

quanto os alunos haviam pensado sobre o sucesso da matemática na f́ısica, o quanto esse

sucesso os surpreende e o quanto eles acham que o curso contribuiu para o entendimento

das questões epistemológicas aqui tratadas. Havia também uma questão dissertativa para

que o aluno pudesse explicar por escrito sua visão epistemológica sobre o sucesso da

matemática na f́ısica. A questão dissertativa não era obrigatória, pois acreditamos que

fazê-la obrigatória poderia diminuir o número de respostas ao questionário. A ı́ntegra

de todos os itens do questionário e suas respectivas categorias pode ser encontrada no

apêndice A.

O questionário foi administrado online, envidado por e-mail para os estudantes, uti-

lizando a plataforma Google Forms. As afirmações foram apresentadas para cada estu-

dante em ordem aleatória, de forma a eliminar qualquer viés de ordenação. Enviamos o

questionário para todos os estudantes matriculados nos cursos de Bacharelado em F́ısica,

Ciências F́ısicas e Biomoleculares, F́ısica Computacional e Licenciatura em Ciências Exa-

tas, todos cursos do Instituto de F́ısica de São Carlos da USP. Não aceitamos respostas

de alunos que ingressaram antes de 2016.

7 Resultados e discussão

O questionário teve um total de 92 respostas. A distribuição dos alunos em função

de seu ano de ingresso e curso estão dispostas nos gráficos 1 e 27. Embora ela não seja

uniforme, temos alunos suficientes de cada curso e ano de ingresso para observar influências

que essas variáveis têm sobre as respostas dos alunos 8.

7As porcentagens dos gráficos de pizza não necessariamente somam 100% por conta do arredonda-
mento.

8Somente parte dos dados obtidos foram analisados neste trabalho. O compilado de todos os dados co-
letados pelo questionário está dispońıvel em 〈https://docs.google.com/spreadsheets/d/1mbXVckIhPW
9Yb59F43d5z0Uqs9JCVBLWyzHj52LmFY/edit?usp=sharing〉.
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Gráfico 1: Distribuição dos alunos por ano Gráfico 2: Distribuição dos alunos por curso

Vamos considerar todos os itens referentes a uma determinada categoria epistemológica

como equivalentes. Assim, podemos visualizar a distribuição das respostas dos partici-

pantes por categoria no gráfico 3.

Gráfico 3: Distribuição de respostas por categoria

Queremos averiguar se o ano de ingresso e o curso dos estudantes impactam suas

respostas em cada categoria epistemológica. Como estamos analisando dados ordinais9,

aplicamos dois testes de Kruskal-Wallis no conjunto de respostas dos estudantes. Um

para analisar se as distribuições de respostas para cada categoria difere em função do ano

de ingresso do aluno e outro para ver se há diferença em função do curso. Os resultados

9Existem debates na literatura sobre se e quando é justificável analisar uma escala Likert como dados de
intervalo. Como não encontramos artigos sobre quando isso seria justificável no contexto da epistemologia
trataremos nossa escala como dados ordinais. Para mais informações acerca da análise de escalas Likert
ver (42, 43).
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dos testes, dispostos na tabela 1, fornecem um valor de σ para cada hipótese sobre as

distribuição e devemos rejeitar a hipótese caso σ < 0.05.

Hipotese σ
A distribuição de Tradução é a mesma entre os anos 0,329
A distribuição de Ĺıngua é a mesma entre os anos 0,253
A distribuição de A priori é a mesma entre os anos 0,979
A distribuição de Antinatural é a mesma entre os anos 0,137

A distribuição de Tradução é a mesma entre os cursos 0,412
A distribuição de Ĺıngua é a mesma entre os cursos 0,946
A distribuição de A priori é a mesma entre os cursos 0,074
A distribuição de Antinatural é a mesma entre os cursos 0,015

Tabela 1: Resultados do teste de Kruskal-Wallis

Os dados da tabela 1 nos mostram que a única diferença estatisticamente significativa

é a da distribuição de respostas dentro da categoria antinatural entre os curso. Isso

é um indicativo de que nenhum dos cursos estão contribuindo para o desenvolvimento

epistemológico dos estudantes, pelo menos com relação à questão abordada por nosso

trabalho.

Para podermos analisar mais a fundo se os cursos contribuem para o aprimoramento

das visões epistemológicas dos estudantes, buscamos analisar se estudantes com mais anos

de curso tendem a ter respostas mais coerentes dentro de cada categoria. Nas análises

subsequentes, portanto, estamos desconsiderando a categoria da “resposta antinatural”,

pois, como ela é um conjunto de concepções antinaturais não necessariamente coerentes

entre si, não faz sentido analisar a coerência dentro dessa categoria.

Gráfico 4: Representatividade das medianas de cada categoria por ano

14



A fim de analisar a coerência das repostas dos estudantes dentro das categorias, calcu-

lamos a variável representatividade da mediana, que é um análogo para o desvio padrão

das respostas de cada aluno dento de uma determinada categoria. A representatividade da

mediana é calculada tomando, para cada aluno, a mediana das respostas dentro de cada

categoria e então calculando a porcentagem de vezes que cada mediana aparece como res-

posta dentro de sua respectiva categoria. O gráfico 4 mostra a representatividade média

das medianas entre os alunos para cada categoria em função do ano de ingresso. Fazendo

uma regressão na média dos valores obtidos para cada categoria (representada pela linha

preta), obtemos um coeficiente angular de β = 0, 9 ± 0, 9. Isso mostra que os cursos

não alteram significativamente a representatividade da mediana dos alunos, corroborando

nossa análise da tabela 1.

Os valores baixos da representatividade das medianas (< 50%) são também um in-

dicativo de que a questão epistemológica do porquê a matemática ter tanto sucesso em

descrever a natureza de fato se configura como uma demanda epistêmica para os estu-

dantes, já que indica que eles não têm uma resposta bem definida para essa questão. A

fim de corroborar essa hipótese calculamos, para cada aluno, a mediana das respostas de

cada categoria e consideramos a mediana mais alta entre as categorias como a concepção

dominante do educando. O gráfico 5 mostra a porcentagem dos alunos de cada ano em

que houve empate e empate triplo para a categoria dominante. Pode-se observar que a

porcentagem é bastante alta e não diminui significativamente com o tempo de curso.

Gráfico 5: Representatividade das medianas de cada categoria por ano

Para além das evidências de que a utilização e o sucesso da matemática na f́ısica é

uma demanda epistêmica que a grade curricular do curso não aborda, constatamos que
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a maioria dos alunos consideram as questões epistemológicas que apresentamos surpreen-

dentes e gostariam que questões semelhantes, relacionadas à filosofia da ciência, fossem

abordadas em seus cursos, como evidenciado pela respostas para as perguntas nos gráficos

6 e 7.

Gráfico 6: Quanto que o sucesso da linguagem
matemática em descrever a natureza o surpreende?

Gráfico 7: Você gostaria gostaria que o seu curso
abordasse mais questões da filosofia da ciência,
como o porquê da linguagem matemática ter

sucesso em descrever a natureza?

8 Conclusão

Neste trabalho argumentamos que o sucesso da matemática na descrição da natureza

é uma questão epistemológica importante do ponto de vista do desenvolvimento histórico

da matematização da f́ısica, como um fator relevante para a aceitação da matematização

pela comunidade cient́ıfica, e no ensino da f́ısica é uma demanda epistêmica que interfere

no aprendizado dos estudantes.

Com o desenvolvimento e aplicação do questionário em alunos de graduação em cursos

ciências exatas demonstramos que os estudantes não têm uma concepção epistemológica

bem definida para questão abordada, indicando portanto que ela é de fato uma demanda

epistêmica, e que os cursos de graduação dos respectivos alunos não contribuem para sanar

essa demanda. Ademais, demonstramos que os estudante, em sua maioria, têm interesse

no tema e gostaria que seus cursos abordassem questões envolvendo filosofia da ciência.

Incorporar conteúdos de filosofia da ciência no curŕıculo dos cursos de ciências exatas

seria algo benéfico, pois ajudaria não só a sanar a demanda epistêmica sobre o sucesso da

matemática como outras que certamente estão presentes e contribuiria para uma formação

mais ampla e sofisticada dos futuros cientistas e professores sobre a natureza da ciência.
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A O questionário

• Informações pessoais

– Nome

– Curso

– Ano de ingresso

• A matemática como ferramenta de tradução

– “A matemática foi descoberta diretamente pela investigação da natureza.”

– “A matemática descreve a natureza com sucesso pois ela é a linguagem intŕınseca
da realidade.”

– “As ferramentas matemáticas são descobertas à medida que elas são necessárias
para o entendimento da natureza.”
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– “Não é posśıvel haver uma linguagem mais eficiente que a matemática para
descrever a natureza”

– “A matemática existe independentemente do ser humano.”

• A matemática como ĺıngua

– “A matemática é uma invenção humana.”

– “A matemática é uma ĺıngua como qualquer outra, só que mais logicamente
rigorosa e precisa.”

– “A nossa matemática também poderia descrever as leis de um universo com-
pletamente diferente do nosso.”

– “É posśıvel que seja desenvolvida uma ĺıngua não matemática que descreva a
natureza tão bem ou melhor que a matemática.”

– “A matemática descreve bem a natureza, pois ela é uma ferramenta descritiva
muito versátil.”

• A matemática como a priori

– “Uma intuição matemática primitiva foi naturalmente selecionada durante a
evolução humana.”

– “A matemática se originou tendo como alicerce uma intuição matemática na-
tural do ser humano.”

– “Antes mesmo do desenvolvimento da matemática os seres humanos primitivos
já tinham noções matemáticas rudimentares.”

– “A matemática descreve bem a natureza pois ela surgiu como um refinamento
de nossos instintos para interpretar a natureza.”

– “Alguns animais (não humanos) possuem algumas noções matemáticas bási-
cas.”

• A resposta antinatural

– “O sucesso da matemática em descrever a natureza é somente uma útil coin-
cidência.”

– “O sucesso da matemática em descrever a natureza mostra que o universo foi
criado com a intenção que os seres humanos pudessem entendê-lo.”

– “O sucesso da matemática em descrever a natureza mostra que o Criador do
universo pensa matematicamente.”

• Outras perguntas

– Quanto que o sucesso da linguagem matemática em descrever a natureza te
surpreende?

– Você costuma pensar sobre o porquê da matemática ter tanto sucesso em de-
screver a natureza?

– Você acha que o seu curso contribuiu para o seu entendimento do porquê da
matemática ter tanto sucesso em descrever a natureza?

– Você gostaria gostaria que o seu curso abordasse mais questões da filosofia da
ciência, como o porquê da matemática ter sucesso em descrever a natureza?

• Questão dissertativa (Opcional)

– Explique sucintamente o porquê, na sua opinião, da matemática ser uma lin-
guagem com tanto sucesso em descrever a natureza.
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